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it leaves the sphere of reflexion. Fig. 5 shows the geo- 
metry; the arc AA' is the track of a reciprocal-lattice 
point rotated about R, and RA=r,  and R R = R M =  
MA, the radius of the circle which the spehre of 
reflexion cuts in the n-layer net. Then 

cos r/= [r2/{2 x (RR)2}] - 1. 

Thus, a reflexion generated at A will appear in the top 
half of the record with z-coordinate = zt, corresponding 
to ~0; and, after the crystal has been rotated by 2 × t/, 
the reflexion at A' will appear on the lower half of the 
film with z coordinate = Zl, corresponding to (~0 + 2 
x t/); or, zl = z~ + r/. 

A program written in FORTRAN IV for an ICL 
1905 computer to perform the operations analysed 
above is available from the author. 
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Anharmonie Non-Gaussian Contribution to the Debye--Waller Factor for NaCI 
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Measurement and theoretical estimate of the anharmonic non-quadratic contribution to the Debye- 
Waller factor for NaC1 are reported. For the experiment the M6ssbauer ),-ray diffraction technique was 
used to find the elastic diffracted intensity separated from the thermal diffuse scattering. The theoretical 
treatment makes use of the asymptotic form of the displacement correlation functions to give simple 
explicit expressions for the non-quadratic term. The role of the relevant lattice dynamical parameters is 
discussed. The deviation from the Gaussian form of the Debye-Waller factor is shown to be large 
enough to be observed, and the possibility of estimating the third-order anharmonic coupling constant 
from such a measurement is indicated. 

Introduction 

As is well known, the Debye-Waller factor governing 
the intensity of elastic scattering processes in a crystal 
defined as 

f (k,T)=(etkU)r 

can generally be written in the cumulant expansion 
form 

f (kT)  = exp { -- ½((ku)2)r ÷ ~4[((ku)4)T 
-- 3((ku)2)~.] + O(k6)} (1) 

where k is the change in the wave-vector of the scat- 
tered quantum, u is the displacement of the scattering 
atom from the lattice equilibrium position and the 
bracket means thermal averaging over the dynamical 
states of the crystal. If the lattice sites have inversion 

symmetry, the odd powers in (1) are absent. Higher 
than fourth-order terms will be neglected here. 

The physical information contained in the Debye- 
Waller factor is particularly clear if the dynamics of 
the lattice can be described entirely by using the 
harmonic approximation, when only the quadratic 
term appears in the exponent and one has a Gaussian 
distribution in k with a width determined by the 
mean-square displacement of the atoms. It was sug- 
gested a long time ago that careful investigation of the 
Debye-Waller factor can be a very useful tool to study 
anharmonic properties of crystals. The anharmonic 
coupling leads to a change in the mean-square dis- 
placement as compared with the harmonic value, and 
also gives rise to the quartic (and higher-order) terms 
in (1). The presence of the quartic term representing 
the deviation from the Gaussian behaviour is an in- 
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herent effect of lattice anharmonicity, in the sense that 
it cannot be removed by a simple renormalization in 
the frame of a harmonic theory. Though earlier work 
(Maradudin & Flinn, 1963) suggested that only the 
change in the value of the quadratic term can be large 
enough to be observed and the quartic term is very 
small, the approximation giving that result turned out 
(Wolfe & Goodman, 1969) to underestimate the 
quartic term. In fact, the calculations of the latter 
authors for copper show that the anisotropy of the 
Debye-Waller factor caused by the quartic term is 
large enough to be observable at the present experi- 
mental accuracy. At the same time, the numerical 
value of the change in the quadratic term, as calculated 
for KBr (Cowley & Cowley, 1966) as well as for copper, 
turned out to be much smaller than expected from an 
a principio estimate as a consequence of a cancellation 
between different contributions; therefore, the clear-cut 
separation of harmonic and anharmonic quadratic 
terms becomes extremely difficult. 

In spite of its smallness, therefore, the quartic term 
in (1) is of particular interest, since it can be expected 
to give direct information on the deviation from quasi- 
harmonic lattice dynamics, and the different depen- 
dence on scattering angle allows it to be separated 
from the harmonic part of the Debye-Waller factor. 
Exact theoretical expressions for the non-Gaussian 
contribution have been given in the early work of 
Maradudin & Flinn, but accurate calculations could 
be performed only recently by Wolfe & Goodman 
using the method of displacement correlation functions 
in real space. A very simple approximate version of 
this method, showing, however, explicitly the role of 
the different physical parameters involved, was used 
here to calculate the quartic term for NaCI, with the 
result that it is rather large to be observed, and a 
reasonable choice of the anharmonic coupling param- 
eters makes the theory fit the experimental results 

P 

Fig. 1. M6ssbauer ),-ray diffractometer set-up. V=electro- 
magnetic vibrator, S= 57C0 source, C=single crystal, G= 
goniometer table, A = resonant absorber 57Fe, D = ?,-ray pro- 
portional counter, Pb =lead shielding. 

reported here. Since, for determining non-quadratic 
terms, the elastically scattered X-ray intensity must be 
measured with high accuracy, to eliminate the thermal 
diffuse scattering (O'Connor & Butt, 1963) the dif- 
fraction technique using M6ssbauer radiation has 
been used. In the following, a short description of the 
experimental procedure is given and then the results 
for NaC1 are discussed in the frame of a simple theo- 
retical treatment. 

Experimental method 

The essential apparatus is a M~Sssbauer y-ray dif- 
fractometer, which is, in fact, an X-ray counter dif- 
fractometer where the X-ray source is replaced by a 
M/Sssbauer ),-ray source of 57Co. The schematic re- 
presentation of this apparatus is given in Fig. 1. The 
single crystal of NaC1 (1 x 2 x 0 . 2  cm) with (200) 
planes parallel to the face was mounted on the gonio- 
meter. The crystal could be heated uniformly in a 
specially designed furnace. The pure elastic part (zero- 
phonon line) of the diffracted intensity was deter- 
mined by the technique developed earlier (O'Connor 
& Butt, 1963). 

A 50 millicurie 57Co source diffused in palladium 
was used and 14.4 keV (2 = 0.86 A)y-rays of 5VFe formed 
by the decay of 5vCo were used as M/3ssbauer resonant 
7-rays. A 'black absorber' (90 % enriched 57Fe isotope 
diffused in ammonium-lithium fluoroferrate) with 
absorber line width about 15 times larger than the 
natural line width of the 14.4 keV radiation, was used 
as the resonant energy analyser in the diffracted beam. 
This absorber was placed in front of the slit of the )p-ray 
detector D which is a gas-proportional counter filled 
with xenon at one atmosphere pressure. 

Since the diffracted elastic intensity is counted for 
many hours (so that a statistical accuracy of about 2 % 
could be obtained), a very good thermal insulation is 
required between the crystal and the metallic gonio- 
meter. This was achieved by using a piece of porcelain 
1.5 cm long with a low coefficient of thermal con- 
ductivity. 

The crystal was clamped to a 3 mm thick silver plate 
which was heated by electric heaters. The silver plate 
was useful in reducing the temperature gradient across 
the crystal. The front face of the crystal was subjected 
to radiation heating by an electric heater placed in 
front of the crystal such that the incident and diffracted 
7-rays are not obstructed. To avoid air currents the 
crystal was enclosed by a cylindrical shield having two 
slits (covered with a very thin mica sheet) for the in- 
cident and the diffracted beams. This heating system 
for the crystal was quite satisfactory over the range 
of temperature up to about 700°K. The temperature 
was measured by two thermocouples fixed at the two 
ends of the crystal and the measurements showed a 
temperature gradient of not more than 2 to 3 % even 
at the highest temperature measured. The temperature 
of the crystal could be kept at a constant value (within 
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about 1% variation) for many hours by using a tem- 
perature-controller. 

The measurements of elastic intensity were made for 
the two orders of reflexion 400 and 600 correspond- 
ing to Bragg angles of 17049 ' and 27 ° 19', respectively. 
For these high angle data extinction effects were as- 
sumed to be negligibly small. The NaCI crystal was 
first set for the reflexion 400 at the Bragg angle 
O =  17049 ' and the detector set at the corresponding 
scattering angle 20 to receive the diffracted ?,-rays. The 
resonant black-absorber was, of course, placed at the 
window of the detector. The intensity was then 
measured at different temperatures over the whole 
temperature range mentioned above. The variation of 
elastic intensity thus measured as a function of tem- 
perature of the crystal for the 400 and 600 Bragg 
reflexions is given in Fig. 2(a) and (b) on a logarithmic 
scale, where a strong non-linearity at high tempera- 
tures can be noticed. This markedly non-linear be- 
haviour was also observed earlier in the case of KCI 
and A1 single crystals (Butt & O'Connor, 1967), and 
it means a strong indication of large anharmonicity 
of the lattice dynamics. Our main aim here was to 
determine the non-quadratic terms in the Debye- 
Waller factor, which, to our knowledge, have not yet 
been observed for the NaC1 structure. [Cubic terms 
arising in the case of fluorite structure observed re- 
cently are discussed in detail by Willis (1969).] There- 
fore, the data were processed so as to give the non- 
Gaussian contribution directly to the Debye-Waller 
factor. 

Results and discussion 

Neglecting the difference between the Debye-Waller 
factors of the alkali and halide ions, an approximation 
which for NaC1 and KC1 can be shown to lead to 
negligible error in this case, one has from the ex- 
pression for the intensity 

I(kT)~lf(kT)l  2 , 

after some algebra, the relation 

1 
(kld)Z-(k2d) 2 

{ ( k @  I(kiT) 1 I(kzT) } 
x log I(kiTo) (kzd)2 log l(kzTo) 
=2(D(T)-D(To)) 

where 

(2) 

(3) 

and kl and k2 are two different angular positions, T 
and To, two different temperatures for the sample, x 
denotes the component along the parallel vectors ka 
and k2 pointing in our case into the [100] crystallo- 
graphic direction, and d is the nearest neighbour 
distance in the lattice. In the following To stands for 
room temperature. The simplest theoretical model 

still possessing the essential features of the situation 
envisaged here may be the following: 

(i) the displacement correlation functions for the 
harmonic lattice 

1 _ _  I 0 CI,,,( T) - (uxu:,, )r (4) 

for two ions at different lattice sites 1#0 are deter- 
mined entirely by the acoustic normal modes of the 
crystal; 

(ii) in the anharmonic part of the Hamiltonian 

1 1 

~By ~Br6 
(5) 

the coupl ing constants V~'~, V ~ p  a are derived f rom 
a pairwise nearest-neighbour interaction when they 
reduce to the form given by Leibfried & Ludwig (1961) 
in their Tables II-IV. 

Assumption (i) would, of course, follow also from 
lattice dynamical model where the difference be- 

tween alkali and halide ions was completely ignored. 
However, it should be pointed out that while such a 
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Fig. 2. Purely elastic (zero-phonon) scattered intensity from 
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(400) and (b) for the (600) Bragg reflexions. 
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model would be an oversimplification of the actual 
physical situation, the assumption as stated above is 
still reasonable for the following reasons. Most 
generally, it is obvious from the explicit normal co- 
ordinate representation of the correlation function 
(e.g. Maradudin & Flinn, 1963) that the latter is, in 
fact, strongly biased by the small-frequency lattice 
modes, and the high-frequency (optical) range of the 
phonon spectrum is of small importance in determin- 
ing this particular quantity. Moreover, the larger 
the distance Ill between the ions concerned, the better 
the expression for the asymptotics of C~x, (Flinn & 
Maradudin, 1962) works, which implies only fre- 
quencies near q=  0 vanishing at the origin; thus, the 
large ll[ behaviour of Clx , is entirely determined by 
the sound region. To complete the argument, one 
notices that, as discussed below, the asymptotics turns 
out to work quite well for any non-zero 1; therefore, 
with the use of an accurate value for C°x,, the as- 
sumption (i) seems to be reasonably adequate. As- 
sumptions (i) and (ii), together with the use of the 
asymptotic form for the displacement correlation 
function, not only provide a fairly simple way of 
calculating the quartic contribution to the Debye- 
Waller factor, but the relevance of the different 
physical parameters of the crystal becomes apparent 
in the final result. Though the asymptotic expansion 
of C/x, was studied in detail by Flinn & Maradudin 
(1962), the actual usefulness of such expressions in 
calculating anharmonic properties was emphasized 
only recently by Wolfe & Goodman (1969) in finding 
that the asymptotic formula 'works surprisingly well 
even for small II1', namely, for nearest-neighbour 
distance within 6 % of accuracy. 

Bearing this in mind, one starts from the general 
expression, 

D(T)=D,(T)+ D2(T) , 

1 
r lmnp ~'~x ~JBx DI(T)= 24d4(k.sT) ~ l/r°:B?6l"~l t " m C C x C ~ x  

lmnp 

1 
D 2 ( T )  = -  8 a 4 ( k . T ) Z  

lmn_~fl~, 
pqr6~tv 

l m X V~f~ ~ --pqrV~#xv C~xCflxCSx (~'q-lxv --Tvcn-P 

(6) 

where the two terms represent the contributions from 
the fourth- and third-order anharmonic coupling, 
respectively. According to the discussion given above, 
one can use with reasonable accuracy the asymptotics 

of C~, for any non-zero 1, which, neglecting the ani- 
sotropy of the (cubic) lattice, goes over into the iso- 
tropic continuum limit. 

C/x, ( r )= kBT 
4zcC44111 

x {fixx, [1-2 (1- /-2-'~] +(1-6x.,<,)21112 ] ] -~(~:/-} (7a) 
while for 1 = 0 one has 

C°~x,( T)= 2B( T)fixx, (7b) 

with 2=(C12-k-C44)/2Cll ,  as expressed in terms of the 
elastic constants, and B(T) is to be taken from an 
accurate model calculation as given by Buyers & Smith 
(1968). The error introduced by using this analytic 
form instead of the actual asymptotics turns out to be 
irrelevant in the light of the discussion given in the 
Appendix of the paper by Flinn & Maradudin, where 
it is shown, for example, that for I in the (100) direction, 
the exact and the continuum limit (7a) coincide 
exactly, while the anisotropy for other directions of 
1 introduces a factor very close to unity. Though the 
calculation with the use of (7a) and (7b) is already 
straightforward, some other approximations of minor 
importance should be mentioned. Since for NaC1 
4=0.255, in the diagonal terms the term with 2 was 
neglected. The commonly used approximation (e.g. 
Maradudin & Flinn, 1963) of keeping only the leading 
derivatives in calculating the third- and fourth-order 
coupling constants has also been made, in view of 
the short exponential decay of the anharmonic coup- 
ling. 

Now using equations (6) and (7) and assumption (ii), 
one has for DI(T) and Dz(T) the expressions 

~0 TM , ( k B T )  3 
DI(T)= 24--0-7~C44~ 4 [Axx(b)+ 224Axy] 

D 2 ( T ) =  - ( 0iIi)2(k T)3 IBex(b)+ 23B u+24E y] 
8(4gC44d)Sd 4 (8) 

where (flIII and ~0 TM are the third- and fourth-order 
derivatives of the anharmonic repulsive potential taken 
at the nearest-neighbour distance or, slightly more 
generally, the constants ~'l and c~ of Leibfreid & Lud- 
wig (1962). The dimensionless numbers, Axu, Bxu and 
Ezu, are simple lattice sums as defined in the Appendix; 
the similar quantities Azz(b), Bxx(b) depend also on the 
value 

CI1 C12 
(erg.cm-3) (erg.cm-3) 
4.91 x 1011. 1.22x 1011. 

Table 1. Lattice dynamical data for NaC1 

C44 ~iIi  ~ iv  
(erg.cm-3) ( e r g . c m - 3 )  (erg.cm-4) 
1.28 × 1011. -1.41 x 1013 t 0.44 × 1022"~ 

* Leibfried (1955) 
t Leibfried & Ludwig (1961) 
:]: Buyers & Smith (1968) 

d Oo b 
(cm) (°K) 

2.78 x 10-8 t 325t 2-21 _+ 0.03 .~ 

A C 27A - 4 
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b= C%(T) 
CI-;"(T) 

where n - n  means nearest-neighbour distance; the 
numerator is the calculated value given by Buyers & 
Smith (1968). It is now easy to understand why the 
effect can be expected to be quite significant in the 
case of most alkali halides, in particular, for NaC1. 
Besides the structure-dependent lattice sums and the 
essentially atomic characteristics -v,,~,~Br -v'o,,p~ the 
quantity D(T) also contains as a factor a high power 
of the inverse shear modulus C44, which is very small 
for this case. The reason why precisely the shearing 
motion of the lattice is essential to build up correlation 
between ionic displacements is simple. Taking any 
general direction of 1, one sees that only those waves 
with wave-vector orthogonal to this direction con- 
tribute to the correlation function; the shifts caused 
by waves going parallel to 1 sum up to zero. 

The lattice dynamical parameters needed in the 
present calculations are tabulated in Table 1. Using 
the data of Table 1, it is easy to reduce the expression 
(8) to the form 

~0IV ( T )  3 
Dx(T)= -~V -~o 0.673 × lO-8(Azx(b)+O'OO8Axu) 

{ ~III ~2 T 3 

x 2-08 x 10-S(B==(b) + 0"01B=u + 0"004Exu) (9) 

where O0 is the Debye temperature from elastic data 
used merely as a temperature unit and f~III and ~iv are 
the anharmonic coupling constants of Leibfried & 
Ludwig (1961) inferred from a phenomenological 
fitting procedure. Keeping only the leading terms 
connected with Axx and Bxx and using the values 
4.54 and 7"09, respectively, for these constants, as 
computed directly, one has from (3) and (9) for 

2re (300) and k2 = 2re 
k l = d  - -d 

1 
D( T ) -  D( To)= 32~4 • ~- 

I(300, T) 
x ~ log I(300, To) 

with 

(200) the result as 

~(200, 7") } 
¼ log 1(200, To) 

(10a) 

~= [3"06 ~oIv - 14.72 \ - -~ - ]  ] x 10 -s . (10b) 

The experimental results are plotted in Fig. 3. As it is 
seen, the functional dependence of D(T)-D(To) vs. 
(T/Oo)3-(To/00) 3 is reasonably linear. Deviation 
from linearity is seen at the smaller temperature region 
where, of course, the linearity of C~x in T becomes 
less and less valid. For the case of ~0 m = ~iii ,  ~0IV = ~IV 

one has c~=C~LL=--I'17x 10 -7 where the subscript 
refers to Leibffied & Ludwig's estimate. The value 
deduced from the present data is also negative but 
much higher, eex = -2"4  x 10 -6, suggesting an anhar- 
monic coupling constant ~0 III much larger than es- 
timated earlier. As to ~0 TM, one sees from (10b) that it 
plays a less important role in determining c~, due to 
its small numerical coefficient. (The corresponding 
effect can also be seen in Wolfe & Goodman's 
Table VIII.) For an estimate, therefore, one can as- 
sume ~IV/~oI¥=~OIII/~oIII which, by use of (10b) gives 
the experimental value for q)III HS 

III__ . : I I I _ _  013 ~0ex--42~, -- --5"92X 1 erg.cm -s . (11) 

The ratio ~0Iv/~ TM remains uncertain for the numerical 
reasons mentioned above; it does not, however, in- 
fluence appreciably the estimate for ¢IH. Bearing in 
mind the rather indirect way by which the values ~iii, 
~iv were determined, the above result seems not un- 
reasonable. As to the accuracy of this result, one has 
to note that the simplifications in the theoretical 
treatment are expected to lead to an error probably 
not higher than that due to the uncertainty of about 
10% in the experimental value of the slope. Since, 
however, the quartic term itself is relatively small, it 
is not impossible that extinction effects normally 
negligible at these scattering angles are responsible, 
at least by part, for the observed disagreement in 
~0 III expressed by (11). 

Though refining the calculations does not represent 
any essential difficulty, at the present stage when one 
has essentially one parameter measured, the simple 
treatment given above seemed to us to be appropriate. 

C o n c l u s i o n s  

The method of Mtissbauer diffractometer technique 
which enables the separation of the inelastic con- 
tributions from the elastic (zero-phonon) diffrac- 
ted intensity was used to investigate anharmonic 
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Fig. 3. Deviat ion f rom the Gaussian form of the Debye-Waller  
factor v s .  temperature  as deduced from the experiments.  
T0=300°K.  Zero slope would correspond to Gaussian be- 
haviour.  
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properties of NaCI. The deviation from the Gaussian 
of the Debye-Waller factor between 300-500 °K was 
measured by using data for the two reflections (400) 
and (600). In the frame of a simple theoretical treat- 
ment based on the asymptotic form of the harmonic 
displacement correlation functions, explicit expres- 
sions for the quartic term D(T) are given by equations 
(8) to (10) showing its dependence on the lattice 
dynamical parameters, in particular on the shear 
modulus C44 and the third and fourth order anhar- 
monic coupling constants. Incidentally, it turns out 
that in determining D(T), the constant ~0 III plays a 
decisive role while the dependence on ~0 Iv is less im- 
portant. It is shown that by using only relative intensity 
data for different reflexions and temperatures, the 
quartic term can be determined from the measure- 
ments. The theoretical estimate based on Leibfried 
and Ludwig's coupling constants leads to a = - 1" 17 × 
10 -7 which in itself is, in fact, large enough to be ob- 
served by using higher-order reflexions and a wide 
range of temperatures. On the other hand, the present 
experiments gave a much larger value aex = - 2 . 4  × 10 -6, 
and to explain it one is led to assume (0 III to be about 
four times are large as Liebfried & Ludwig's result. 
Though such value seems to be very high, one should 
note the somewhat different approximations used in 
the two cases and also the rather direct way in which 
~0 III can be reduced from the observed value of D(T). 
On the other hand, considering the serious difficulties 
envisaged in measuring such a delicate effect, repeated 
measurements at three or more higher-order reflexions 
would be desirable, since from that set of data one 
would be able to check the consistency of the results 
by choosing different pairs of reflexions to obtain D(T). 

The theoretical treatment can be generalized by 
including short-range interactions beyond nearest 
neighbours and also using the still asymptotic but 
more accurate, though more implicit, expressions 
(Flinn & Maradudin, 1962) for the displacement 
correlation function, accounting for the proper 
anisotropy of the lattice. In a more refined treatment 
one should also take into account the difference be- 
tween the temperature factors for the two kinds of 
ions. As Js shown easily, ignoring that difference leads 
to a spurious quartic term proportional to the square 
of the difference between the quadratic parts of the 
individual Debye-WaUer factors. The magnitude of 
this term, however, is much smaller than the actual 
quartic term due to anharmonicity. This is so for the 
temperature factors given by Buyers & Smith (1968) or 
those by Gottlicher (1968). Yet, the large scatter be- 
tween these two sets of data indicates a basic uncer- 
tainty of available data as far as this difference is 
concerned, and if it is actually larger than found by 
Gottlicher, the spurious quartic term may be quite 
large. 
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APPENDIX 

The lattice sums A~p and B~p, are given as 

2 l 3 l 2 l + a  2 3(e,,p) c,p + 3(%~) (c,,B) 
l 

l + a  3 l 
B ) 

l + a  l 2 l '  + a  l t ) 2 ( r , l - - l t  B~=2~(c~.~ -%, )  (c~,~, - c  Coot/ x ~  --el;  p) 
IIt 

where the dimensionless quantities c Z are defined by 

cL,(T)- kBT 
4~C44d elx ' 

and a means the vector (100). 
Similar expressions define B~p and E,p, c~¢fl. One 

notices that the expressions are equivalent to those 
given by Wolfe & Goodman (1969) except for the 
explicit form of CxZy given by (7). 
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